资源类型

期刊论文 268

会议视频 6

年份

2023 30

2022 32

2021 39

2020 17

2019 15

2018 25

2017 16

2016 7

2015 17

2014 9

2013 4

2012 5

2011 7

2010 10

2009 6

2008 3

2007 8

2006 5

2005 1

2004 1

展开 ︾

关键词

能源 3

TRIP钢 2

二氧化碳 2

人工智能 2

演化 2

质量 2

&alpha 1

Chord图 1

Klee图 1

N3C空位 1

Pt–Ba–Ce/γ-Al2O3 催化剂,物理化学性质,NOx存储和还原,NOx 排放,H2 还原剂 1

Skyline图 1

TRIZ 1

δ铁素体 1

“trade-off”效应 1

《联合国气候变化框架公约》(UNFCCC) 1

一氧化碳 1

一维应力波 1

展开 ︾

检索范围:

排序: 展示方式:

High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution

《能源前沿(英文)》 doi: 10.1007/s11708-023-0892-6

摘要: High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.

关键词: high-entropy     electrocatalysis     synthetic methods     water-electrolysis     hydrogen and oxygen evolutions    

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 570-580 doi: 10.1007/s11705-022-2247-y

摘要: Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

关键词: bimetallic metal–organic frameworks     bifunctional electrocatalyst     density functional theory     oxygen reduction reaction     oxygen evolution reaction    

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 376-383 doi: 10.1007/s11705-021-2062-x

摘要: To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

关键词: interface engineering     CoS/CeO2     electrodeposition     electrocatalyst     oxygen evolution reaction    

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygenevolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 102-115 doi: 10.1007/s11705-022-2179-6

摘要: High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

关键词: oxygen evolution reaction     electrocatalysts     ternary layered double hydroxides     long-term stability    

cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygenevolution performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1755-1764 doi: 10.1007/s11705-023-2318-8

摘要: Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn–air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm–2. Furthermore, the Zn–air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm–2, indicating considerable practical application potential.

关键词: oxygen evolution reaction     porous carbon nanosheets     Co nanoparticles     edge-induced topological defects     Zn–air batteries    

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supportedelectrocatalysts for hydrogen evolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 437-448 doi: 10.1007/s11705-022-2228-1

摘要: High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

关键词: molybdenum oxides     oxygen vacancies     heterostructure     electrocatalysts     hydrogen evolution reaction    

nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygenevolution reaction

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1114-1124 doi: 10.1007/s11705-021-2087-1

摘要: Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal-organic-frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni2+ and Fe3+. This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO2. This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm–2 and a small Tafel slope of 84.4 mV·dec–1 in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts.

关键词: metal-organic framework     pyrolysis     ultrafine     Fe-modulated Ni nanoparticles     oxygen evolution reaction    

supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygenevolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 417-424 doi: 10.1007/s11705-018-1711-1

摘要:

A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm2 in 1 mol·L1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.

关键词: bimetallic phosphides     N-doped carbon     self-support     hydrogen evolution     oxygen evolution    

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradationover an urchin-like oxygen-doped MoS/ZnInS composite

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1566-z

摘要:

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

关键词: Dual-functional photocatalysts     Oxygen-doped MoS2/ZnIn2S4     H2 evolution     Organic pollutant    

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1487-1499 doi: 10.1007/s11705-021-2085-3

摘要: Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced CoS/C nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of CoS embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis-mass spectroscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It is found that CoS nanoparticles homogenously dispersed in the in situ formed N, S co-doped porous carbon/graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% of current after continuously running for around 5 h, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active CoS and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

关键词: MOF derivative     graphene     electrocatalyst     oxygen reduction reaction     oxygen evolution reaction     hydrogen evolution reaction    

An overview and recent advances in electrocatalysts for direct seawater splitting

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1408-1426 doi: 10.1007/s11705-021-2102-6

摘要: In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

关键词: seawater splitting     electrocatalysts     oxygen evolution reaction     hydrogen evolution reaction     chlorine chemistry    

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 409-416 doi: 10.1007/s11705-017-1689-0

摘要:

A low-cost and high-activity catalyst for oxygen evolution reaction (OER) is the key to the water splitting technology for hydrogen generation. Here we report the use of three solvents, DMF, ethanol and glycol, in the solvothermal synthesis of three nano-catalysts, Co3(VO4)2-I, Co3(VO4)2-II, and Co3(VO4)2-III, respectively. Transmission electron microscope shows Co3(VO4)2-I, II, and III exist as ultrafine nanosheets, ultrathin nanofilms, and ultrafine nanosheet-comprised microspheres, respectively. These Co3(VO4)2 catalysts exhibit OER electrocatalysis, among which the Co3(VO4)2-II shows the lowest onset overpotential of 310 mV and only requires a small overpotential of 330 mV to drive current density of 10 mA/cm2. Due to their high surface free energy, the ultrathin nanofilms of Co3(VO4)2-II exhibits a good immobilization effect with the high electrocatalytic activity for OER.

关键词: Co3(VO4)2     oxygen evolution reaction     electrocatalyst     water splitting    

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 279-287 doi: 10.1007/s11705-020-1965-2

摘要: Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction (OER) catalyst. The surface features were extensively characterized using X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. On FeNi-modified carbon the overpotential for OER was very low (280 mV) and comparable to that on noble metal catalyst IrO . The electrochemical properties have been investigated to reveal the difference between the binary alloy- and single metal-doped carbons. This work demonstrates a significant step for the development of low-cost, environmentally-friendly and highly-efficient OER catalysts.

关键词: OER     polystyrene salt     porous carbon     FeNi alloy     p/n junction    

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water splitting

《能源前沿(英文)》 2022年 第16卷 第3期   页码 483-491 doi: 10.1007/s11708-022-0813-0

摘要: Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

关键词: three-dimensional molybdenum nanomaterials     hydrogen evolution reaction     oxygen evolution reaction     overall water splitting    

Ni-Bi 助剂用于α-Fe2O3 Letter

党珂,王拓,李澄澄,张冀杰,刘珊珊,巩金龙

《工程(英文)》 2017年 第3卷 第3期   页码 285-289 doi: 10.1016/J.ENG.2017.03.005

摘要:

本文提出了镍-硼酸(Ni-Bi) 助催化剂负载于α 型三氧化二铁(Fe2O3) 具有提升表面动力学和钝化表面态的双重作用。Ni-Bi助剂的负载使Fe2O3 光电阳极的光电流起始电位产生230 mV 的负移,1.23 V(vs. RHE)下的光电流密度也提升了2.3 倍。Ni-Bi助剂层中的Bi 促进了产氧反应的脱质子步骤。

关键词: 镍-硼酸     &alpha     型三氧化二铁     产氧反应     助催化剂    

标题 作者 时间 类型 操作

High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution

期刊论文

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reductionand oxygen evolution reaction: a density functional theory study

期刊论文

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

期刊论文

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygenevolution reaction

期刊论文

cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygenevolution performance

期刊论文

Oxygen-deficient MoO/NiS heterostructure grown on nickel foam as efficient and durable self-supportedelectrocatalysts for hydrogen evolution reaction

期刊论文

nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygenevolution reaction

期刊论文

supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygenevolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

期刊论文

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradationover an urchin-like oxygen-doped MoS/ZnInS composite

期刊论文

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts

期刊论文

An overview and recent advances in electrocatalysts for direct seawater splitting

期刊论文

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

期刊论文

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

期刊论文

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water splitting

期刊论文

Ni-Bi 助剂用于α-Fe2O3

党珂,王拓,李澄澄,张冀杰,刘珊珊,巩金龙

期刊论文